Harmonic Index and Harmonic Polynomial on Graph Operations
نویسندگان
چکیده
منابع مشابه
on the harmonic index of graph operations
the harmonic index of a connected graph $g$, denoted by $h(g)$, is defined as $h(g)=sum_{uvin e(g)}frac{2}{d_u+d_v}$ where $d_v$ is the degree of a vertex $v$ in g. in this paper, expressions for the harary indices of the join, corona product, cartesian product, composition and symmetric difference of graphs are derived.
متن کاملOn the harmonic index and harmonic polynomial of Caterpillars with diameter four
The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...
متن کاملon the harmonic index and harmonic polynomial of caterpillars with diameter four
the harmonic index h(g) , of a graph g is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in e(g), where deg (u) denotes the degree of a vertex u in v(g). in this paper we define the harmonic polynomial of g. we present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in caterpill...
متن کاملOn Harmonic Index and Diameter of Unicyclic Graphs
The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)} $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...
متن کاملOn the harmonic index of bicyclic graphs
The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2018
ISSN: 2073-8994
DOI: 10.3390/sym10100456